Search (203 results, page 2 of 11)

  • × theme_ss:"Automatisches Indexieren"
  1. Jones, S.; Paynter, G.W.: Automatic extractionof document keyphrases for use in digital libraries : evaluations and applications (2002) 0.04
    0.03692453 = product of:
      0.14769812 = sum of:
        0.14769812 = weight(_text_:jones in 1601) [ClassicSimilarity], result of:
          0.14769812 = score(doc=1601,freq=2.0), product of:
            0.43290398 = queryWeight, product of:
              6.176015 = idf(docFreq=250, maxDocs=44421)
              0.070094384 = queryNorm
            0.34117985 = fieldWeight in 1601, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.176015 = idf(docFreq=250, maxDocs=44421)
              0.0390625 = fieldNorm(doc=1601)
      0.25 = coord(1/4)
    
  2. Abdul, H.; Khoo, C.: Automatic indexing of medical literature using phrase matching : an exploratory study 0.04
    0.036469653 = product of:
      0.14587861 = sum of:
        0.14587861 = weight(_text_:headings in 3669) [ClassicSimilarity], result of:
          0.14587861 = score(doc=3669,freq=2.0), product of:
            0.34012607 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.070094384 = queryNorm
            0.4288957 = fieldWeight in 3669, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.0625 = fieldNorm(doc=3669)
      0.25 = coord(1/4)
    
    Abstract
    Reports the 1st part of a study to apply the technique of phrase matching to the automatic assignment of MeSH subject headings and subheadings to abstracts of periodical articles.
  3. Losee, R.M.: ¬A Gray code based ordering for documents on shelves : classification for browsing and retrieval (1992) 0.03
    0.031910945 = product of:
      0.12764378 = sum of:
        0.12764378 = weight(_text_:headings in 2334) [ClassicSimilarity], result of:
          0.12764378 = score(doc=2334,freq=2.0), product of:
            0.34012607 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.070094384 = queryNorm
            0.37528375 = fieldWeight in 2334, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.0546875 = fieldNorm(doc=2334)
      0.25 = coord(1/4)
    
    Abstract
    A document classifier places documents together in a linear arrangement for browsing or high-speed access by human or computerised information retrieval systems. Requirements for document classification and browsing systems are developed from similarity measures, distance measures, and the notion of subject aboutness. A requirement that documents be arranged in decreasing order of similarity as the distance from a given document increases can often not be met. Based on these requirements, information-theoretic considerations, and the Gray code, a classification system is proposed that can classifiy documents without human intervention. A measure of classifier performance is developed, and used to evaluate experimental results comparing the distance between subject headings assigned to documents given classifications from the proposed system and the Library of Congress Classification (LCC) system
  4. Shafer, K.: Scorpion Project explores using Dewey to organize the Web (1996) 0.03
    0.031910945 = product of:
      0.12764378 = sum of:
        0.12764378 = weight(_text_:headings in 6818) [ClassicSimilarity], result of:
          0.12764378 = score(doc=6818,freq=2.0), product of:
            0.34012607 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.070094384 = queryNorm
            0.37528375 = fieldWeight in 6818, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.0546875 = fieldNorm(doc=6818)
      0.25 = coord(1/4)
    
    Abstract
    As the amount of accessible information on the WWW increases, so will the cost of accessing it, even if search servcies remain free, due to the increasing amount of time users will have to spend to find needed items. Considers what the seemingly unorganized Web and the organized world of libraries can offer each other. The OCLC Scorpion Project is attempting to combine indexing and cataloguing, specifically focusing on building tools for automatic subject recognition using the technqiues of library science and information retrieval. If subject headings or concept domains can be automatically assigned to electronic items, improved filtering tools for searching can be produced
  5. Junger, U.: Can indexing be automated? : the example of the Deutsche Nationalbibliothek (2014) 0.03
    0.031910945 = product of:
      0.12764378 = sum of:
        0.12764378 = weight(_text_:headings in 2969) [ClassicSimilarity], result of:
          0.12764378 = score(doc=2969,freq=2.0), product of:
            0.34012607 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.070094384 = queryNorm
            0.37528375 = fieldWeight in 2969, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.0546875 = fieldNorm(doc=2969)
      0.25 = coord(1/4)
    
    Abstract
    The German Integrated Authority File (Gemeinsame Normdatei, GND), provides a broad controlled vocabulary for indexing documents on all subjects. Traditionally used for intellectual subject cataloging primarily for books, the Deutsche Nationalbibliothek (DNB, German National Library) has been working on developing and implementing procedures for automated assignment of subject headings for online publications. This project, its results, and problems are outlined in this article.
  6. Moulaison-Sandy, H.; Adkins, D.; Bossaller, J.; Cho, H.: ¬An automated approach to describing fiction : a methodology to use book reviews to identify affect (2021) 0.03
    0.031910945 = product of:
      0.12764378 = sum of:
        0.12764378 = weight(_text_:headings in 1711) [ClassicSimilarity], result of:
          0.12764378 = score(doc=1711,freq=2.0), product of:
            0.34012607 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.070094384 = queryNorm
            0.37528375 = fieldWeight in 1711, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.0546875 = fieldNorm(doc=1711)
      0.25 = coord(1/4)
    
    Abstract
    Subject headings and genre terms are notoriously difficult to apply, yet are important for fiction. The current project functions as a proof of concept, using a text-mining methodology to identify affective information (emotion and tone) about fiction titles from professional book reviews as a potential first step in automating the subject analysis process. Findings are presented and discussed, comparing results to the range of aboutness and isness information in library cataloging records. The methodology is likewise presented, and how future work might expand on the current project to enhance catalog records through text-mining is explored.
  7. Chou, C.; Chu, T.: ¬An analysis of BERT (NLP) for assisted subject indexing for Project Gutenberg (2022) 0.03
    0.031910945 = product of:
      0.12764378 = sum of:
        0.12764378 = weight(_text_:headings in 2141) [ClassicSimilarity], result of:
          0.12764378 = score(doc=2141,freq=2.0), product of:
            0.34012607 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.070094384 = queryNorm
            0.37528375 = fieldWeight in 2141, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.0546875 = fieldNorm(doc=2141)
      0.25 = coord(1/4)
    
    Abstract
    In light of AI (Artificial Intelligence) and NLP (Natural language processing) technologies, this article examines the feasibility of using AI/NLP models to enhance the subject indexing of digital resources. While BERT (Bidirectional Encoder Representations from Transformers) models are widely used in scholarly communities, the authors assess whether BERT models can be used in machine-assisted indexing in the Project Gutenberg collection, through suggesting Library of Congress subject headings filtered by certain Library of Congress Classification subclass labels. The findings of this study are informative for further research on BERT models to assist with automatic subject indexing for digital library collections.
  8. Gil-Leiva, I.: SISA-automatic indexing system for scientific articles : experiments with location heuristics rules versus TF-IDF rules (2017) 0.03
    0.02735224 = product of:
      0.10940896 = sum of:
        0.10940896 = weight(_text_:headings in 4622) [ClassicSimilarity], result of:
          0.10940896 = score(doc=4622,freq=2.0), product of:
            0.34012607 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.070094384 = queryNorm
            0.32167178 = fieldWeight in 4622, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.046875 = fieldNorm(doc=4622)
      0.25 = coord(1/4)
    
    Abstract
    Indexing is contextualized and a brief description is provided of some of the most used automatic indexing systems. We describe SISA, a system which uses location heuristics rules, statistical rules like term frequency (TF) or TF-IDF to obtain automatic or semi-automatic indexing, depending on the user's preference. The aim of this research is to ascertain which rules (location heuristics rules or TF-IDF rules) provide the best indexing terms. SISA is used to obtain the automatic indexing of 200 scientific articles on fruit growing written in Portuguese. It uses, on the one hand, location heuristics rules founded on the value of certain parts of the articles for indexing such as titles, abstracts, keywords, headings, first paragraph, conclusions and references and, on the other, TF-IDF rules. The indexing is then evaluated to ascertain retrieval performance through recall, precision and f-measure. Automatic indexing of the articles with location heuristics rules provided the best results with the evaluation measures.
  9. Thönssen, B.: Automatische Indexierung und Schnittstellen zu Thesauri (1988) 0.02
    0.023328533 = product of:
      0.09331413 = sum of:
        0.09331413 = weight(_text_:und in 29) [ClassicSimilarity], result of:
          0.09331413 = score(doc=29,freq=12.0), product of:
            0.15546227 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.070094384 = queryNorm
            0.60023654 = fieldWeight in 29, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.078125 = fieldNorm(doc=29)
      0.25 = coord(1/4)
    
    Abstract
    Über eine Schnittstelle zwischen Programmen zur automatischen Indexierung (PRIMUS-IDX) und zur maschinellen Thesaurusverwaltung (INDEX) sollen große Textmengen schnell, kostengünstig und konsistent erschlossen und verbesserte Recherchemöglichkeiten geschaffen werden. Zielvorstellung ist ein Verfahren, das auf PCs ablauffähig ist und speziell deutschsprachige Texte bearbeiten kann
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  10. Hauer, M.: Neue Qualitäten in Bibliotheken : Durch Content-Ergänzung, maschinelle Indexierung und modernes Information Retrieval können Recherchen in Bibliothekskatalogen deutlich verbessert werden (2004) 0.02
    0.022857198 = product of:
      0.091428794 = sum of:
        0.091428794 = weight(_text_:und in 1886) [ClassicSimilarity], result of:
          0.091428794 = score(doc=1886,freq=18.0), product of:
            0.15546227 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.070094384 = queryNorm
            0.58810925 = fieldWeight in 1886, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.0625 = fieldNorm(doc=1886)
      0.25 = coord(1/4)
    
    Abstract
    Seit Frühjahr 2004 ist Dandelon.com als neues, offenes, internationales Wissenschaftsportal in Betrieb. Erste Retrieval-Tests bescheinigen deutlich bessere Suchergebnisse als in herkömmlichen OPACs oder Verbundsystemen. Seine Daten stammen aus intelligentCAPTURE und Bibliothekskatalogen. intelligentCAPTURE erfasst Content über Scanning oder File-Import oder Web-Spidering und indexiert nach morphosyntaktischen und semantischen Verfahren. Aufbereiteter Content und Indexate gehen an Bibliothekssysteme und an dandelon.com. Dandelon.com ist kostenlos zugänglich für Endbenutzer und ist zugleich Austauschzentrale und Katalogerweiterung für angeschlossene Bibliotheken. Neue Inhalte können so kostengünstig und performant erschlossen werden.
  11. Vledutz-Stokolov, N.: Concept recognition in an automatic text-processing system for the life sciences (1987) 0.02
    0.022793533 = product of:
      0.09117413 = sum of:
        0.09117413 = weight(_text_:headings in 2848) [ClassicSimilarity], result of:
          0.09117413 = score(doc=2848,freq=2.0), product of:
            0.34012607 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.070094384 = queryNorm
            0.26805982 = fieldWeight in 2848, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.0390625 = fieldNorm(doc=2848)
      0.25 = coord(1/4)
    
    Abstract
    This article describes a natural-language text-processing system designed as an automatic aid to subject indexing at BIOSIS. The intellectual procedure the system should model is a deep indexing with a controlled vocabulary of biological concepts - Concept Headings (CHs). On the average, ten CHs are assigned to each article by BIOSIS indexers. The automatic procedure consists of two stages: (1) translation of natural-language biological titles into title-semantic representations which are in the constructed formalized language of Concept Primitives, and (2) translation of the latter representations into the language of CHs. The first stage is performed by matching the titles agianst the system's Semantic Vocabulary (SV). The SV currently contains approximately 15.000 biological natural-language terms and their translations in the language of Concept Primitives. Tor the ambiguous terms, the SV contains the algorithmical rules of term disambiguation, ruels based on semantic analysis of the contexts. The second stage of the automatic procedure is performed by matching the title representations against the CH definitions, formulated as Boolean search strategies in the language of Concept Primitives. Three experiments performed with the system and their results are decribed. The most typical problems the system encounters, the problems of lexical and situational ambiguities, are discussed. The disambiguation techniques employed are described and demonstrated in many examples
  12. Golub, K.; Lykke, M.; Tudhope, D.: Enhancing social tagging with automated keywords from the Dewey Decimal Classification (2014) 0.02
    0.022793533 = product of:
      0.09117413 = sum of:
        0.09117413 = weight(_text_:headings in 3918) [ClassicSimilarity], result of:
          0.09117413 = score(doc=3918,freq=2.0), product of:
            0.34012607 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.070094384 = queryNorm
            0.26805982 = fieldWeight in 3918, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.0390625 = fieldNorm(doc=3918)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - The purpose of this paper is to explore the potential of applying the Dewey Decimal Classification (DDC) as an established knowledge organization system (KOS) for enhancing social tagging, with the ultimate purpose of improving subject indexing and information retrieval. Design/methodology/approach - Over 11.000 Intute metadata records in politics were used. Totally, 28 politics students were each given four tasks, in which a total of 60 resources were tagged in two different configurations, one with uncontrolled social tags only and another with uncontrolled social tags as well as suggestions from a controlled vocabulary. The controlled vocabulary was DDC comprising also mappings from the Library of Congress Subject Headings. Findings - The results demonstrate the importance of controlled vocabulary suggestions for indexing and retrieval: to help produce ideas of which tags to use, to make it easier to find focus for the tagging, to ensure consistency and to increase the number of access points in retrieval. The value and usefulness of the suggestions proved to be dependent on the quality of the suggestions, both as to conceptual relevance to the user and as to appropriateness of the terminology. Originality/value - No research has investigated the enhancement of social tagging with suggestions from the DDC, an established KOS, in a user trial, comparing social tagging only and social tagging enhanced with the suggestions. This paper is a final reflection on all aspects of the study.
  13. Humphrey, S.M.; Névéol, A.; Browne, A.; Gobeil, J.; Ruch, P.; Darmoni, S.J.: Comparing a rule-based versus statistical system for automatic categorization of MEDLINE documents according to biomedical specialty (2009) 0.02
    0.022793533 = product of:
      0.09117413 = sum of:
        0.09117413 = weight(_text_:headings in 287) [ClassicSimilarity], result of:
          0.09117413 = score(doc=287,freq=2.0), product of:
            0.34012607 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.070094384 = queryNorm
            0.26805982 = fieldWeight in 287, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.0390625 = fieldNorm(doc=287)
      0.25 = coord(1/4)
    
    Abstract
    Automatic document categorization is an important research problem in Information Science and Natural Language Processing. Many applications, including, Word Sense Disambiguation and Information Retrieval in large collections, can benefit from such categorization. This paper focuses on automatic categorization of documents from the biomedical literature into broad discipline-based categories. Two different systems are described and contrasted: CISMeF, which uses rules based on human indexing of the documents by the Medical Subject Headings (MeSH) controlled vocabulary in order to assign metaterms (MTs), and Journal Descriptor Indexing (JDI), based on human categorization of about 4,000 journals and statistical associations between journal descriptors (JDs) and textwords in the documents. We evaluate and compare the performance of these systems against a gold standard of humanly assigned categories for 100 MEDLINE documents, using six measures selected from trec_eval. The results show that for five of the measures performance is comparable, and for one measure JDI is superior. We conclude that these results favor JDI, given the significantly greater intellectual overhead involved in human indexing and maintaining a rule base for mapping MeSH terms to MTs. We also note a JDI method that associates JDs with MeSH indexing rather than textwords, and it may be worthwhile to investigate whether this JDI method (statistical) and CISMeF (rule-based) might be combined and then evaluated showing they are complementary to one another.
  14. Strobel, S.; Marín-Arraiza, P.: Metadata for scientific audiovisual media : current practices and perspectives of the TIB / AV-portal (2015) 0.02
    0.022793533 = product of:
      0.09117413 = sum of:
        0.09117413 = weight(_text_:headings in 4667) [ClassicSimilarity], result of:
          0.09117413 = score(doc=4667,freq=2.0), product of:
            0.34012607 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.070094384 = queryNorm
            0.26805982 = fieldWeight in 4667, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.0390625 = fieldNorm(doc=4667)
      0.25 = coord(1/4)
    
    Abstract
    Descriptive metadata play a key role in finding relevant search results in large amounts of unstructured data. However, current scientific audiovisual media are provided with little metadata, which makes them hard to find, let alone individual sequences. In this paper, the TIB / AV-Portal is presented as a use case where methods concerning the automatic generation of metadata, a semantic search and cross-lingual retrieval (German/English) have already been applied. These methods result in a better discoverability of the scientific audiovisual media hosted in the portal. Text, speech, and image content of the video are automatically indexed by specialised GND (Gemeinsame Normdatei) subject headings. A semantic search is established based on properties of the GND ontology. The cross-lingual retrieval uses English 'translations' that were derived by an ontology mapping (DBpedia i. a.). Further ways of increasing the discoverability and reuse of the metadata are publishing them as Linked Open Data and interlinking them with other data sets.
  15. Golub, K.: Automatic subject indexing of text (2019) 0.02
    0.022793533 = product of:
      0.09117413 = sum of:
        0.09117413 = weight(_text_:headings in 268) [ClassicSimilarity], result of:
          0.09117413 = score(doc=268,freq=2.0), product of:
            0.34012607 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.070094384 = queryNorm
            0.26805982 = fieldWeight in 268, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.0390625 = fieldNorm(doc=268)
      0.25 = coord(1/4)
    
    Abstract
    Automatic subject indexing addresses problems of scale and sustainability and can be at the same time used to enrich existing metadata records, establish more connections across and between resources from various metadata and resource collec-tions, and enhance consistency of the metadata. In this work, au-tomatic subject indexing focuses on assigning index terms or classes from established knowledge organization systems (KOSs) for subject indexing like thesauri, subject headings systems and classification systems. The following major approaches are dis-cussed, in terms of their similarities and differences, advantages and disadvantages for automatic assigned indexing from KOSs: "text categorization," "document clustering," and "document classification." Text categorization is perhaps the most wide-spread, machine-learning approach with what seems generally good reported performance. Document clustering automatically both creates groups of related documents and extracts names of subjects depicting the group at hand. Document classification re-uses the intellectual effort invested into creating a KOS for sub-ject indexing and even simple string-matching algorithms have been reported to achieve good results, because one concept can be described using a number of different terms, including equiv-alent, related, narrower and broader terms. Finally, applicability of automatic subject indexing to operative information systems and challenges of evaluation are outlined, suggesting the need for more research.
  16. Weidenbach, N.: Werkzeuge zur Evaluierung und Optimierung von Regeln zur Automatischen Indexierung : Anwendungssystementwicklung (1994) 0.02
    0.021549975 = product of:
      0.0861999 = sum of:
        0.0861999 = weight(_text_:und in 2836) [ClassicSimilarity], result of:
          0.0861999 = score(doc=2836,freq=4.0), product of:
            0.15546227 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.070094384 = queryNorm
            0.5544748 = fieldWeight in 2836, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.125 = fieldNorm(doc=2836)
      0.25 = coord(1/4)
    
    Imprint
    Darmstadt : Fachhochschule, Fachbereich Information und Dokumentation
  17. Experimentelles und praktisches Information Retrieval : Festschrift für Gerhard Lustig (1992) 0.02
    0.021380952 = product of:
      0.08552381 = sum of:
        0.08552381 = weight(_text_:und in 72) [ClassicSimilarity], result of:
          0.08552381 = score(doc=72,freq=28.0), product of:
            0.15546227 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.070094384 = queryNorm
            0.55012584 = fieldWeight in 72, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.046875 = fieldNorm(doc=72)
      0.25 = coord(1/4)
    
    Content
    Enthält die Beiträge: SALTON, G.: Effective text understanding in information retrieval; KRAUSE, J.: Intelligentes Information retrieval; FUHR, N.: Konzepte zur Gestaltung zukünftiger Information-Retrieval-Systeme; HÜTHER, H.: Überlegungen zu einem mathematischen Modell für die Type-Token-, die Grundform-Token und die Grundform-Type-Relation; KNORZ, G.: Automatische Generierung inferentieller Links in und zwischen Hyperdokumenten; KONRAD, E.: Zur Effektivitätsbewertung von Information-Retrieval-Systemen; HENRICHS, N.: Retrievalunterstützung durch automatisch generierte Wortfelder; LÜCK, W., W. RITTBERGER u. M. SCHWANTNER: Der Einsatz des Automatischen Indexierungs- und Retrieval-System (AIR) im Fachinformationszentrum Karlsruhe; REIMER, U.: Verfahren der Automatischen Indexierung. Benötigtes Vorwissen und Ansätze zu seiner automatischen Akquisition: Ein Überblick; ENDRES-NIGGEMEYER, B.: Dokumentrepräsentation: Ein individuelles prozedurales Modell des Abstracting, des Indexierens und Klassifizierens; SEELBACH, D.: Zur Entwicklung von zwei- und mehrsprachigen lexikalischen Datenbanken und Terminologiedatenbanken; ZIMMERMANN, H.: Der Einfluß der Sprachbarrieren in Europa und Möglichkeiten zu ihrer Minderung; LENDERS, W.: Wörter zwischen Welt und Wissen; PANYR, J.: Frames, Thesauri und automatische Klassifikation (Clusteranalyse): HAHN, U.: Forschungsstrategien und Erkenntnisinteressen in der anwendungsorientierten automatischen Sprachverarbeitung. Überlegungen zu einer ingenieurorientierten Computerlinguistik; KUHLEN, R.: Hypertext und Information Retrieval - mehr als Browsing und Suche.
  18. Stock, M.: Textwortmethode und Übersetzungsrelation : Eine Methode zum Aufbau von kombinierten Literaturnachweis- und Terminologiedatenbanken (1989) 0.02
    0.021295939 = product of:
      0.085183755 = sum of:
        0.085183755 = weight(_text_:und in 399) [ClassicSimilarity], result of:
          0.085183755 = score(doc=399,freq=10.0), product of:
            0.15546227 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.070094384 = queryNorm
            0.54793847 = fieldWeight in 399, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.078125 = fieldNorm(doc=399)
      0.25 = coord(1/4)
    
    Abstract
    Geisteswissenschaftliche Fachinformation erfordert eine enge Kooperation zwischen Literaturnachweis- und Terminologieinformationssystemen. Eine geeignete Dokumentationsmethode für die Auswertung geisteswissen- schaftlicher Literatur ist die Textwortwethode. Dem originalsprachig aufgenommenen Begriffsrepertoire ist ein einheitssprachiger Zugriff beizuordnen, der einerseits ein vollständiges und genaues Retrieval garantiert und andererseits den Aufbau fachspezifischer Wörterbücher vorantreibt
  19. Kumpe, D.: Methoden zur automatischen Indexierung von Dokumenten (2006) 0.02
    0.021081904 = product of:
      0.084327616 = sum of:
        0.084327616 = weight(_text_:und in 1782) [ClassicSimilarity], result of:
          0.084327616 = score(doc=1782,freq=20.0), product of:
            0.15546227 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.070094384 = queryNorm
            0.5424314 = fieldWeight in 1782, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.0546875 = fieldNorm(doc=1782)
      0.25 = coord(1/4)
    
    Abstract
    Diese Diplomarbeit handelt von der Indexierung von unstrukturierten und natürlichsprachigen Dokumenten. Die zunehmende Informationsflut und die Zahl an veröffentlichten wissenschaftlichen Berichten und Büchern machen eine maschinelle inhaltliche Erschließung notwendig. Um die Anforderungen hierfür besser zu verstehen, werden Probleme der natürlichsprachigen schriftlichen Kommunikation untersucht. Die manuellen Techniken der Indexierung und die Dokumentationssprachen werden vorgestellt. Die Indexierung wird thematisch in den Bereich der inhaltlichen Erschließung und des Information Retrieval eingeordnet. Weiterhin werden Vor- und Nachteile von ausgesuchten Algorithmen untersucht und Softwareprodukte im Bereich des Information Retrieval auf ihre Arbeitsweise hin evaluiert. Anhand von Beispiel-Dokumenten werden die Ergebnisse einzelner Verfahren vorgestellt. Mithilfe des Projekts European Migration Network werden Probleme und grundlegende Anforderungen an die Durchführung einer inhaltlichen Erschließung identifiziert und Lösungsmöglichkeiten vorgeschlagen.
    Imprint
    Berlin : Technische Universität Berlin / Institut für Softwaretechnik und Theoretische Informatik, Computergestützte Informationssysteme
  20. Renz, M.: Automatische Inhaltserschließung im Zeichen von Wissensmanagement (2001) 0.02
    0.02000005 = product of:
      0.0800002 = sum of:
        0.0800002 = weight(_text_:und in 6671) [ClassicSimilarity], result of:
          0.0800002 = score(doc=6671,freq=18.0), product of:
            0.15546227 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.070094384 = queryNorm
            0.5145956 = fieldWeight in 6671, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.0546875 = fieldNorm(doc=6671)
      0.25 = coord(1/4)
    
    Abstract
    Methoden der automatischen Inhaltserschließung werden seit mehr als 30 Jahren entwickelt, ohne in luD-Kreisen auf merkliche Akzeptanz zu stoßen. Gegenwärtig führen jedoch die steigende Informationsflut und der Bedarf an effizienten Zugriffsverfahren im Informations- und Wissensmanagement in breiten Anwenderkreisen zu einem wachsenden Interesse an diesen Methoden, zu verstärkten Anstrengungen in Forschung und Entwicklung und zu neuen Produkten. In diesem Beitrag werden verschiedene Ansätze zu intelligentem und inhaltsbasiertem Retrieval und zur automatischen Inhaltserschließung diskutiert sowie kommerziell vertriebene Softwarewerkzeuge und Lösungen präsentiert. Abschließend wird festgestellt, dass in naher Zukunft mit einer zunehmenden Automatisierung von bestimmten Komponenten des Informations- und Wissensmanagements zu rechnen ist, indem Software-Werkzeuge zur automatischen Inhaltserschließung in den Workflow integriert werden
    Source
    nfd Information - Wissenschaft und Praxis. 52(2001) H.2, S.69-78

Years

Languages

  • d 161
  • e 40
  • a 1
  • m 1
  • nl 1
  • More… Less…

Types

  • a 150
  • x 31
  • el 23
  • m 12
  • s 5
  • d 1
  • h 1
  • p 1
  • r 1
  • More… Less…